a(0)=s, a(1)=t,
a(k) + a(k-1)
a(k+1)= --------------
2
(1)Prove that: lim a(n) exists
n->oo
(2)Lim a(n) =?
n->oo
由式子得知 a(k+1) 是 a(k)和a(k-1)的平均數
所以 min(a(k),a(k-1)) < a(k+1) < max(a(k),a(k-1))
a(k) + a(k-1)
a(k+1)= --------------
2
可想成 a(k+1) + a(k+1) = a(k) + a(k-1)
則
[m [1;32ma(2)[m+[1;32ma(2)[m=a(1)+a(0)
[1;31ma(3)[m+[1;31ma(3)[m=[1;32ma(2)[m+a(1)
[1;33ma(4)[m+[1;33ma(4)[m=[1;31ma(3)[m+[1;32ma(2)[m
[1;35ma(5)[m+[1;35ma(5)[m=[1;33ma(4)[m+[1;31ma(3)[m
.
.
.
[1;36ma(k-2)[m+[1;36ma(k-2)[m=[1;35ma(k-3)[m+[1;33ma(k-4)[m
a(k-1)+[1;34ma(k-1)[m=[1;36ma(k-2)[m+[1;35ma(k-3)[m
+ a(k) + a(k) =[1;34ma(k-1)[m+[1;36ma(k-2)[m
-------------------------------
a(k)+a(k)+a(k-1) = a(1)+a(1)+a(0)
而
lim a(k)+a(k)+a(k-1) = lim 3*a(k) = a(1)+a(1)+a(0)
k->00 k->00
=> 3*( lim a(k) ) = t+t+s
k->00
2t + s
=> lim a(k) = ----------
k->00 3
--
[0m= [1m[Origin] [1;37;44m 中興電機 拿鐵屋 [0;34;47m bbs.ee.nchu.edu.tw [m
[0m= [1m[Author] [0mbridge [1mpost from [mavanti33.ee.nchu.edu.tw