Discussion:
a problem
(时间太久无法回复)
托斯卡尼艷陽下
2009-09-29 02:07:54 UTC
Permalink
Fn is Fabonacci number

Prove that 5|Fn <=> 5|n



--
※ Origin: 醉月風情站(bbs.math.ntu.edu.tw) ◆ From: ccDHCP.Math.NCTU.edu.tw
IP : 140.112.50.3(台大數學系醉月風情站)
轉吧
2009-09-29 03:43:43 UTC
Permalink
Post by 托斯卡尼艷陽下
Fn is Fabonacci number
Prove that 5|Fn <=> 5|n
就數列除以5的餘數 依序為


1 1 2 3 0 3 3 1 4 0 4 4 3 2 0 2 2 4 1 0

然後循環

即可得到 5|Fn <=> 5|n
--
⊕╮荒漠傳奇.幻想的起點╭╮╫ ● ╭→ bbs.math.nccu.edu.tw since May 1999 ←⊕
╰ desert.twbbs.org ─╯╰╨─→╯↘→  LukeK from ( 210.59.19.244 )
托斯卡尼艷陽下
2009-09-30 17:49:16 UTC
Permalink
※ 引述《obel (托斯卡尼艷陽下)》之銘言:
: Fn is Fabonacci number
: Prove that 5|Fn <=> 5|n

我想起來了..

F(5n)=F(5n-1)+F(5n-2)
=2xF(5n-2)+F(5n-3)
=3xF(5n-3)+2xF(5n-4)
=5xF(5n-4)+3xF(5n-5) ...(1)

Claim: 5|F(5k) for k≧1 ...(*)

(1)k=1, F(5)=5 => 5|F(5)
(2)Assume that k=m (*) is true, which is 5|F(5m) => F(5m)=5s ...(2)

When k=m+1,

F(5k)=F(5m+5)=5xF(5m+1)+3xF(5m)
=5[F(5m+1)+3s]

So k=m+1 is also true by (1),(2) and the claim is proved.


--
※ Origin: 醉月風情站(bbs.math.ntu.edu.tw) ◆ From: 125-231-128-5.dynamic.hinet.net
IP : 140.112.50.3(台大數學系醉月風情站)
继续阅读narkive:
Loading...