commualg
2005-02-21 01:34:03 UTC
V is a finite-dimensional vector space
T:V-->V be a linear transformation
W is a T-invariant subspace of V
i.e. T(W) is contained in W
V=R(T)+W and R(T)��W=�r�
prove that N(T)=W
�ҩ�W�]�t��N(T)����
�i�O�Ϥ��V���]�t�N�ҩ����X��
�������
�ڪ�E-mail=MSN=***@ms47.hinet.net
--
[1;43m��[46m��[m Or[1mig[30min[m: [41m ���O�W�v�d�j�ǣ����F���� [36;47m bbs.ntnu.edu.tw [m
[1;44m��[41m��[m A[1mut[30mho[mr: [1;33mcommualg [30m�q [31m203.71.160.160 [30m�o��[m
T:V-->V be a linear transformation
W is a T-invariant subspace of V
i.e. T(W) is contained in W
V=R(T)+W and R(T)��W=�r�
prove that N(T)=W
�ҩ�W�]�t��N(T)����
�i�O�Ϥ��V���]�t�N�ҩ����X��
�������
�ڪ�E-mail=MSN=***@ms47.hinet.net
--
[1;43m��[46m��[m Or[1mig[30min[m: [41m ���O�W�v�d�j�ǣ����F���� [36;47m bbs.ntnu.edu.tw [m
[1;44m��[41m��[m A[1mut[30mho[mr: [1;33mcommualg [30m�q [31m203.71.160.160 [30m�o��[m