Discussion:
a problem
(时间太久无法回复)
托斯卡尼艷陽下
2010-02-22 03:39:55 UTC
Permalink
f(x) is differentiable,

If lim f'(x) = oo
x ->oo

prove or disprove that lim f(x) = oo.
x->oo

--
※ Origin: 醉月風情站(bbs.math.ntu.edu.tw) ◆ From: 140.113.22.70
IP : 140.112.50.3(台大數學系醉月風情站)
天才軒
2010-02-22 15:33:26 UTC
Permalink
Post by 托斯卡尼艷陽下
f(x) is differentiable,
If lim f'(x) = oo
x ->oo
prove or disprove that lim f(x) = oo.
x->oo
We can find M such that f'(x) > 1 for x ≧ M > 0.

Let H(x)= (f(x)-f(M))-(x-M). Then H(M) = 0 and H'=f'-1 > 0 for x ≧ M.

Hence, H is increasing, that implies H > 0 for x≧M.


Given any N > 0, let S = M + |f(M)| + N.

If x > S, H(S) = f(x)-f(M) - x + M < f(x)-f(M) - M - |f(M)| - N + M

= f(x) - (f(M) + |f(M)|) - N.

Since H(S) > 0, f(x) - (f(M)+|f(M)|) -N > 0; hence,

f(x) > N + (f(M)+|f(M)|) ≧ N.



--

弄清π是無理數這件事可能是根本沒有實際用處的

但是如果我們能弄清楚那麼肯定就不能容忍不去設法把它弄清楚

 ──E.C.Titchmarsh
--
● ˙ ˙ ◢▇◣ ◢▇◣ ▇ ▇ █▇◣ █▇◣ █▇◣ ◢▇◣ █▇▉ /
˙ ╲ █ █ █ █ █ ▉ █ ▉ █▆ █▆▉ ▉▉▉ ★
◢ ★˙ ◥█◤ ◥█◤ ◥█◤ ██◤ █◥▆ █▆◤ █ ▉ ▉▉▉˙ ◣
 CDBBS 中正築夢園BBS站 歡迎蒞臨參觀 cd.twbbs.org (140.123.20.230)  
 http://cd.twbbs.org◥  * Author: Fresh ★ From: 118.169.36.233   ◤
继续阅读narkive:
Loading...