Post by ææ¯å¡å°¼è·é½ä¸f(x) is differentiable,
If lim f'(x) = oo
x ->oo
prove or disprove that lim f(x) = oo.
x->oo
We can find M such that f'(x) > 1 for x ≧ M > 0.
Let H(x)= (f(x)-f(M))-(x-M). Then H(M) = 0 and H'=f'-1 > 0 for x ≧ M.
Hence, H is increasing, that implies H > 0 for x≧M.
Given any N > 0, let S = M + |f(M)| + N.
If x > S, H(S) = f(x)-f(M) - x + M < f(x)-f(M) - M - |f(M)| - N + M
= f(x) - (f(M) + |f(M)|) - N.
Since H(S) > 0, f(x) - (f(M)+|f(M)|) -N > 0; hence,
f(x) > N + (f(M)+|f(M)|) ≧ N.
--
[m
[1;36m弄清π是無理數這件事可能是根本沒有實際用處的[m
[1;36m但是如果我們能弄清楚那麼肯定就不能容忍不去設法把它弄清楚[m
[1;36m ──E.C.Titchmarsh[m
--
[m[1;33m●[36m [37m˙[36m [37m˙[36m ◢▇◣ ◢▇◣ ▇ ▇ █▇◣ █▇◣ █▇◣ ◢▇◣ █▇▉ [33m/[m
[1m˙[m [1;33m╲[37m █ █ █ █ █ ▉ █ ▉ █▆ █▆▉ ▉▉▉ [33m★[m
[32m◢[37;42m [1;33m★[37m˙ [33m◥█◤ ◥█◤ ◥█◤ ██◤ █◥▆ █▆◤ █ ▉ ▉▉▉[37m˙[;37;42m [32;40m◣[m
[32;42m [1;37mCDBBS [32m中正[35m築夢園[36mBBS站 [31m歡迎蒞臨參觀[32m cd.twbbs.org (140.123.20.230)[36m [;37;42m [m
[1;32m http://cd.twbbs.org[;32;40m◥[30;42m [1;33m [37m*[32m [37mAuthor:[;30;42m Fresh [1;37m★ From:[;30;42m 118.169.36.233 [1;32m [33m [;32;40m◤[m