Discussion:
[問題] Series
(时间太久无法回复)
A-gine
2009-06-18 03:13:18 UTC
Permalink
Suppose {a_k} is a decreasing sequence of real number.


Prove that if Σ a_k converges, then k(a_k) → 0 as k → ∞
k=1


麻煩大大指導Q___Q


--

大大,謝謝你~~

我會繼續加油,努力學好高微>口<


--
※ Origin: 楓橋驛站<bbs.cs.nthu.edu.tw>
◆ From: iamagine @ 120.107.174.106 
A-gine
2009-06-21 06:59:53 UTC
Permalink
Post by A-gine
Suppose {a_k} is a decreasing sequence of real number.
��
Prove that if �U a_k converges, then k(a_k) �� 0 as k �� ��
k=1
�·Фj�j����Q___Q
�U a_k converges ==> a_k �� 0

��> �G {a_k} �D�t.

���o�@�B�AŪ������������i�H���D���D�t?
2n
(2n)a_{2n} �� 2 �U a_k �� 0 as n����, by Cauchy criterion
k=n+1

2n-1
(2n-1)a_{2n-1} �� 2 �U a_k + a_{2n-1} �� 0
k=n

�G�o�� k(a_k) �� 0 as k �� ��.


--

�j�j�A���§A~~

�ڷ|�~���[�o�A�V�O�Ǧn���L>�f<


--
�� �� �w ������寸�����}�i�I�w���w���w�l ����������
���M���O �� ���g�p �@�@�@�@�@�@�@�@�@�@ �n �x�p�e�f�g
���ڽ��I�e�f�h ;   �֨ӴM���A�R���@�a�C �d�g�� ���@ �� ��
 ���d�f �@�����A�ä��w�媺�@�~���ӺۡC �� �� ���סס� ��
 �� ���Ǫ��Ϭ��u�O�A�j�P�ܽбz�C ���b�c  �g ��
��  ��.�� iamagine�q120.107.174.106   ���� ��
继续阅读narkive:
Loading...