Discussion:
[問題]因式分解
(时间太久无法回复)
it is time
2009-07-20 16:45:03 UTC
Permalink
因式分解以下問題
1. (x^2y^2) + xy(x-y+1) +x-y+1
2. x^2 + y^3 + xy^2 + 2xy-1
3. x^4 -12x + 232
4. x^3 - x(y^2 + yz + z^ 2) + yz(y + z)
5. x^3 - ax^2 - 2ax + a^2 - 1
6. y^3 + xy^2 + x^2 + 2xy - 1

--
● ˙ ˙ ◢▇◣ ◢▇◣ ▇ ▇ █▇◣ █▇◣ █▇◣ ◢▇◣ █▇▉ /
˙ ╲ █ █ █ █ █ ▉ █ ▉ █▆ █▆▉ ▉▉▉ ★
◢ ★˙ ◥█◤ ◥█◤ ◥█◤ ██◤ █◥▆ █▆◤ █ ▉ ▉▉▉˙ ◣
 CDBBS 中正築夢園BBS站 歡迎蒞臨參觀 cd.twbbs.org (140.123.20.230)  
 *Modified: happyman At: 2009/07/21 Tue 00:46:11 ★ From: 140.123.218.162
Mini
2009-07-22 16:04:17 UTC
Permalink
Post by it is time
因式分解以下問題
1. (x^2y^2) + xy(x-y+1) +x-y+1
2. x^2 + y^3 + xy^2 + 2xy-1
3. x^4 -12x + 232
4. x^3 - x(y^2 + yz + z^ 2) + yz(y + z)
5. x^3 - ax^2 - 2ax + a^2 - 1
6. y^3 + xy^2 + x^2 + 2xy - 1
6. y^3 + xy^2 + x^2 + 2xy - 1
= (y^3 - 1) + (xy^2 + xy + x) + (x^2 + xy - x)
= (y - 1)(y^2 + y + 1) + x(y^2 + y + 1) + x (x + y - 1)
= (y^2 + y + 1)(x + y - 1) + x(x + y - 1)
= (x + y - 1)(y^2 + y + x + 1)

--
◤◥ Origin:  國立臺灣師範大學˙精靈之城  bbs.ntnu.edu.tw 
◣◢ Author: minimilk 從 61-64-85-93-adsl-tai.dynamic.so-net.net.tw 發表
Mini
2009-07-22 16:39:54 UTC
Permalink
Post by it is time
因式分解以下問題
1. (x^2y^2) + xy(x-y+1) +x-y+1
2. x^2 + y^3 + xy^2 + 2xy-1
3. x^4 -12x + 232
4. x^3 - x(y^2 + yz + z^ 2) + yz(y + z)
5. x^3 - ax^2 - 2ax + a^2 - 1
6. y^3 + xy^2 + x^2 + 2xy - 1
5. x^3 - ax^2 - 2ax + a^2 - 1
= (x^3 - 1) - (ax^2 + ax + a) - (ax - a^2 - a)
= (x - 1)(x^2 + x + 1) - a(x^2 + x + 1) - a(x - a - 1)
= (x^2 + x + 1)(x - a - 1) - a(x - a - 1)
= (x - a - 1)(x^2 + x - a + 1)


2和6 題目一樣(做法類似5)

y^3 + xy^2 + x^2 + 2xy - 1
= (y^3 - 1) + (xy^2 + xy + x) + (x^2 + xy - x)
= (y - 1)(y^2 + y + 1) + x(y^2 + y + 1) + x (x + y - 1)
= (y^2 + y + 1)(x + y - 1) + x(x + y - 1)
= (x + y - 1)(y^2 + y + x + 1)


--
◤◥ Origin:  國立臺灣師範大學˙精靈之城  bbs.ntnu.edu.tw 
◣◢ Author: minimilk 從 61-64-85-93-adsl-tai.dynamic.so-net.net.tw 發表
Mini
2009-07-22 17:04:42 UTC
Permalink
Post by it is time
因式分解以下問題
1. (x^2y^2) + xy(x-y+1) +x-y+1
2. x^2 + y^3 + xy^2 + 2xy-1
3. x^4 -12x + 232
4. x^3 - x(y^2 + yz + z^ 2) + yz(y + z)
5. x^3 - ax^2 - 2ax + a^2 - 1
6. y^3 + xy^2 + x^2 + 2xy - 1
4. x^3 - xy^2 - xyz - xz^2 + y^2z + yz^2
= x(x + y)(x - y) - yz(x - y) - z^2(x - y)
= (x - y)(x^2 + xy - yz - z^2)


5. x^3 - ax^2 - 2ax + a^2 - 1
= (x^3 - 1) - (ax^2 + ax + a) - (ax - a^2 - a)
= (x - 1)(x^2 + x + 1) - a(x^2 + x + 1) - a(x - a - 1)
= (x^2 + x + 1)(x - a - 1) - a(x - a - 1)
= (x - a - 1)(x^2 + x - a + 1)


2和6 題目一樣(做法類似5)

y^3 + xy^2 + x^2 + 2xy - 1
= (y^3 - 1) + (xy^2 + xy + x) + (x^2 + xy - x)
= (y - 1)(y^2 + y + 1) + x(y^2 + y + 1) + x (x + y - 1)
= (y^2 + y + 1)(x + y - 1) + x(x + y - 1)
= (x + y - 1)(y^2 + y + x + 1)



--
◤◥ Origin:  國立臺灣師範大學˙精靈之城  bbs.ntnu.edu.tw 
◣◢ Author: minimilk 從 61-64-85-93-adsl-tai.dynamic.so-net.net.tw 發表
髒筆
2009-07-23 06:23:59 UTC
Permalink
1. (x^2y^2) + xy(x-y+1) +x-y+1
=x^2y^2+x^2y-xy^2+xy+x-y+1 猜測兩個因式皆有xy項之後湊出
=(xy+x+1)(xy-y+1)


3. x^4 -12x + 232
題目有錯 改題目如下 x^4-12x+323
一次因式用323=17*19可以測
設分解為(x^2+ax+b)(x^2+cx+d)
展開 比較係數得a=-c, b+d=c^2, b*d=323, 解得b,d後check c*(b-d)=-12
原式為(x^2+6x+19)(x^2-6x+17)

--
※ Origin: 交大應數資訊站 <bbs.math.nctu.edu.tw>
◆ From : 220-133-4-16.HINET-IP.hinet.net 
→ weeeeeeeeell 推:難是難在debug 浪費一堆時間去了 09/07/23
it is time
2009-07-23 08:12:33 UTC
Permalink
Post by it is time
1. (x^2y^2) + xy(x-y+1) +x-y+1
=x^2y^2+x^2y-xy^2+xy+x-y+1 猜測兩個因式皆有xy項之後湊出
=(xy+x+1)(xy-y+1)
3. x^4 -12x + 232
題目有錯 改題目如下 x^4-12x+323
好強哦,題目抄錯都知道
高手
Post by it is time
一次因式用323=17*19可以測
設分解為(x^2+ax+b)(x^2+cx+d)
展開 比較係數得a=-c, b+d=c^2, b*d=323, 解得b,d後check c*(b-d)=-12
原式為(x^2+6x+19)(x^2-6x+17)
--
● ˙ ˙ ◢▇◣ ◢▇◣ ▇ ▇ █▇◣ █▇◣ █▇◣ ◢▇◣ █▇▉ /
˙ ╲ █ █ █ █ █ ▉ █ ▉ █▆ █▆▉ ▉▉▉ ★
◢ ★˙ ◥█◤ ◥█◤ ◥█◤ ██◤ █◥▆ █▆◤ █ ▉ ▉▉▉˙ ◣
 CDBBS 中正築夢園BBS站 歡迎蒞臨參觀 cd.twbbs.org (140.123.20.230)  
 http://cd.twbbs.org◥  * Author: happyman ★ From: 140.123.218.162   ◤
Loading...