Discussion:
[問題] 如何証明f(x,y)不可微?
(时间太久无法回复)
A-gine
2009-02-07 13:38:10 UTC
Permalink
f(x,y)= { 0 if (x,y)=(0,0)
|
| __(x^2)y__ if (x,y)≠(0,0)
{ (x^4)+(y^2)

証明:f(x,y)在(0,0)不可微.



它在(x,y)≠(0,0)時,那個分子和分母

沒辦法讓我按照可微的定義,然後令△y= m△x

結果消不掉…


麻煩大大們了~

謝謝大家


--

大大,謝謝你~~

我會繼續加油,努力學好高微>口<


--
▄ ◢ ▄▄▄ ▄▄▄ ▄ ▄▄▄  清大資工
 █ █◣◢█ █▄█ █▄█ █ █▄▄ iamagine 從 163.23.231.86 
█ █◥◤█ █ █ █ █▄▄ █▄▄ 【楓橋驛站】 telnet://imaple.tw 
漫不經心
2009-02-07 14:29:24 UTC
Permalink
Post by A-gine
f(x,y)= { 0 if (x,y)=(0,0)
|
| __(x^2)y__ if (x,y)≠(0,0)
{ (x^4)+(y^2)
証明:f(x,y)在(0,0)不可微.
它在(x,y)≠(0,0)時,那個分子和分母
沒辦法讓我按照可微的定義,然後令△y= m△x
結果消不掉…
麻煩大大們了~
謝謝大家
We shall assume that f is differentiable at (0,0) and arrive at a

contradiction. Suppose f is differentiable at (0,0).

Then f is continuous at (0,0) by theorem. Now, consider

a sequences of points {a_n} = {(1/n, 1/n^2)} in |R^2,

it is clear that when {a_n} tend to (0,0) (as n -> ∞),

f({a_n}) -> 1/2 which is not 0 = f(0,0) and hence f is dicontinuous at (0,0).

This is a contradiction. From another point of view, if you approach (0,0)

along the parabola y = mx^2 where (x,y) is not (0,0), then

f(x,y) -> m/(1 + m^2) which depends on m as (x,y) tends to (0.0).

--
※ Origin: 交大次世代(bs2.to)
◆ From: 123-195-218-100.dynamic.kbronet.c
A-gine
2009-02-08 00:40:19 UTC
Permalink
Post by 漫不經心
f(x,y)= { 0 if (x,y)��(0,0)
|
| __(x^2)y__ if (x,y)��(0,0)
{ (x^4)+(y^2)
�����Gf(x,y)�b(0,0)���i�L.
We shall assume that f is differentiable at (0,0) and arrive at a
contradiction. Suppose f is differentiable at (0,0).
Then f is continuous at (0,0) by theorem. Now, consider
a sequences of points {a_n} = {(1/n, 1/n^2)} in |R^2,
^^^^^^^^^^^^^^^^^^^^^^
�j�j�A�o�ӼƦC�������O?= =a
Post by 漫不經心
it is clear that when {a_n} tend to (0,0) (as n -> ��),
f({a_n}) -> 1/2 which is not 0 = f(0,0) and hence f is dicontinuous at (0,0).
This is a contradiction. From another point of view, if you approach (0,0)
along the parabola y = mx^2 where (x,y) is not (0,0), then
 ^^^^^^^^^^�j�j�A�o�ӭn�����O�O?�q�����ݥX�Ӫ�= =a
�o���Ӧa�褣����A�·Фj�j�F~
Post by 漫不經心
f(x,y) -> m/(1 + m^2) which depends on m as (x,y) tends to (0.0).
--

�j�j�A���§A~~

�ڷ|�~���[�o�A�V�O�Ǧn���L>�f<

--
�c_�ġ��]_�h�g' * ��_ �����g�h �b_ �e�g�h�C.�����毸�Dtelnet://imaple.tw����}
=�b �v���� *. �g�t@�n �d�v �c~+ ���a
���d�c�b�c�C�b�c��_����_�h.* �u=rom�G163.23.231.86
�ǡáǡááǡǡááǡáǡáá�@�H�ááǡáǡááǡǡááǡǡááǡǡáǡ� 
iamagine �� 2009/02/08 Sun 08:41:18 �q 163.23.231.86 �ק�
漫不經心
2009-02-08 12:19:24 UTC
Permalink
二個方法的技巧都是讓原來題目中的 f(x,y) 的分子和分母

都變成四次的齊次式(即各項都是 4 次式),這樣才能讓不連續的可能性增加。

至於第一個方法除了是強迫配成齊次式之外,還要選一個數列 {a_n}

其極限值是 0,且讓 f({a_n}) 的極限值不是 0,

而 {(1/n,1/n^2)} 就是一種選法。

--
※ Origin: 交大次世代(bs2.to)
◆ From: 123-195-218-100.dynamic.kbronet.c

Loading...